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Orthogonal and non-orthogonal separation of variables in the 
wave equation utr - IC,, + V(x)u = 0 

R Z Zhdanov, I V Revenko and W I Fushchych 
Institute of Mathematics of the Academy of Science of Ukraine, Tereshchenkivska 
Street 3, Kiev, Ukraine 

Received 5 April 1993 

Abshaet. We develop a direct approach to the separation of variables in partial differential 
equations. Within the framework of this approach, the problem of the separation of vari- 
ables in the wave equation with time-independent potential reduces to solving an over. 
determined system of nonlinear differential equations. We have succeeded in constructing 
its general solution and, as a result, all potentials V(x) permitting variable separation have 
been found. For each of them we have constructed all inequivalent coordinate systems 
providing separability of the equation under study. It should he noted that the above 
approach yields both orthogonal and non-orthogonal systems of coordinates. 

1. Introduction 

Separation of variables (sv) in two- and three-dimensional Laplace, Helmholtz, d’Alem- 
bert and Klein-Gordon-Fock equations has been carried out in classical works by 
Bocher [l], Darboux [2], Eisenhart [3], Stepvanov [4], Olevsky [ 5 ] ,  and Kalnins and 
Miller (see [6] and references therein). Nevertheless, a complete solution to the problem 
of sv in a two-dimensional wave equation with time-independent potential 

(0 + J’(x))u= uzr- U,+ V(x)u= 0 (1) 

has not been obtained yet. In (1) u=u(l ,  X)EC 2(R2, RI), V(x)EC(Ri,  RI). 
Equations belonging to the class (1) are widely used in modem mathematical physics 

and can be related to other important linear and nonlinear partial differential equations 
(PDE). First, we mention the Lorentz-invariant wave equation 

uyw0- uy,y,  + u(Y: -$)U = 0. (2) 
The above equation can be reduced to the form (1) with the change of variables 

171 
t = exp( y1/2) cosh yo x=exp(y,/Z) sinh yo 

and what is more, potentials V(r) ,  U(r)  are connected by the following relation: 
u(r)= V(r ) .  

Another related equation is the hyperbolic type equation 

uxora- C*(xI)u,,,, =o (3) 
that is widely used in various areas of mathematical physics. 
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Equation (3) is reduced to the form (1) by the change of variables 

u(t, x ) =  ~ c ( x o ) l - ’ ~ v ( x o .  X I )  

x =  [c(x,)]- l  dx, J t=xa 

and what is more 

V ( x )  = -2’Z(x,)[c”2(x,)l 

where x = J [c(xl)]- l  dxl. 
The third related equation is the nonlinear wave equation 

W,,- [c-? W) W&= 0. 

By substitution W= R,, equation ( 5 )  is reduced to the form 

R,, - c-’( RJR,, = 0 .  

Applying to the above equation the Legendre transformation 

xo = R, x I  = R,  u,=t v, ,=x 

v =  tR,+xR, - R, 

we obtain (3). Consequently, the methof of sv in the linear equation (1) makes it 
possible to construct exact solutions of the nonlinear wave equation (5).  

Let us also mention the Euler-Poisson-Darboux equation 

U,,- v , - x - ~ v , + m ~ x - ~ v = 0  

U,, - U, -k (mZ - 1 / 4 p u  = 0 

that is reduced to an equation of the form ( I )  

by the change of dependent variable v( t ,  x )  = x-’’2u(t, x). 
For the solution of (1) with separated variables w,(# ,  x). W Z ( ~ ,  x ) ,  we use the ansatz 

u(t, x ) = Q ( t ,  x ) P ) I ( W I ) B ( ~  ( 7 )  
which reduces PDE (1) to two ordinary diKerential equations (ODE) for functions P),, p)2. 

There exist three possibilities for sv in (1). The first is to separate it into two second- 
order ODE. The second possibility is to separate (1) into first-order and second-order 
ODE, and the third possibility is to separate (1) into two first-order ODE. In the present 
paper we shall investigate in detail the first two possibilities. The third possibility 
requires special separate consideration and will be the topic of future publications. 

Consider the following ODE: 

+ ; = A , ( W ~ ,  a)@;+ ELW,, a)qj i= 1,2 (8) 
where A , ,  B i c  CZ(R’  x A, RI) are some unknown functions, LEA c RI is a real param- 
eter (separation constant). 

Definition 1 [ 7 , 8 ] .  Equation (1) separates into two ODE if substitution of the ansatz 
(7) into (1) with subsequent exclusion of the second derivatives q I ,  @according to (8) 
yields an identity with respect to the variables @;, p;, (considered as independent). 
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On the basis of the above definition one can formulate a constructive procedure of 
sv in (l), suggested for the first time in [7]. At the first step, one has to substitute 
expression (7) into (1) and to express the second derivatives 1 @ via functions @i,  q, 
according to (8). At the second step, the equality obtained is split with respect to the 
independent variables @,, p,, 1. As a result, one obtains an over-determinated system 
of partial differential equations for functions Q, w I  and 0% with undefined coefficients. 
The general solution of this system gives rise to all systems of coordinates providing 
separability of (1). 

Definition 2. Equation (1) separates into first- and second-order ODE 

ifsubstitution of the ansatz (7) into (1) with subsequent exclusion of derivatives G I ,  fi’ 
according to (9) yields an identity with respect to the variables p,, @, @, 1 (considered 
as independent). 

Let us emphasize that the above approach to sv in (1) has much in common with 
the non-Lie method of reduction of nonlinear PDE suggested in [9-111. It is also impor- 
tant to note that the idea to represent solutions of linear ditrerential equations in the 
‘separated’ form (7) goes as far as the classical works by Fourier and Euler (for a 
modem exposition of the problem of sv, see Miller [12] and Koornwinder [13]). 

2. Orthogonal separation of variables in equation (1) 

It is evident that (1) admits sv in Cartesian coordinates w 1  = t ,  o2 = x under arbitrary 
v= V(x). 
DeJinition 3. Equation (1) admits non-trivial sv if there exist at least one coordinate 
system o , ( t ,  x), wz(t ,  x )  different from the Cartesian system providing its separability. 

Next, if one makes in (1) the following transformations: 

T-+Cit X + C , X  

t+t  x+x+ cz C,ERI 

then the class of equations (1) transforms into itself and what is more 

V(x)+ V ( X )  = c: V(C,X) 

V(x)+V’(x)= V(X+CZ). 

That is why potentials V(x) and V‘(x) ,  connected by one of the above relations, 
are considered as equivalent ones. 

When separating variables in (1) one has to solve an intermediate problem of 
description of all inequivalent potentials such that the equation admits non-trivial sv 
(classi6cation problem). The next step is to obtain a complete description of the coordi- 
nate systems providing sv in (1) with these potentials. 

First, we adduce the principal results on separation of (1)  into two second-order 
ODE and then give an outline of the proof of the corresponding~theorems. 
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Theorem I. Equation (1) admits non-trivial sv in the sense of definition 1 iff the function 
V(x) is given, up to equivalence relations (loa), by one of the following formulae: 
( 1 )  V=mx 

(2 )  V= mx-2 

(3) v = m  sin-2 x 
(4)  v= m si&-’ x 

(3) V=mcosh-2x 

R 2 Zhdanov et a1 

(6)  V=mexpx 

( 7) 

(8)  

(9) 

(10) 
(11) V=ml + mZx-’ 

(12) V=m. 

Here m, ml. m2 are arbitrary real parameters, m2#0. 

V=COS-~ x(ml +m2 sin x) 

V= cosh-2 x(ml + m2 sinh x) 

V= s h K 2  x(m, + m2 cosh x) 

V=ml exp x+m2 exp 2x 

Note I .  Equation (1) having the potential (6) from (1 1) is transformed with the change 
of variables [ 71. 

x‘ = exp(x/2) cosh t t’=exp(x/2) sinh t 

into (1) with V(x) = m. 

Note 2. Equations (I)  having the potentials (3), (4 ) ,  (5) from (11) are transformed into 
(1) with V(x) =mx-’ by means of changes of variables [7] 

x‘ = tan 5 +tan q 

x‘=tanh <+tanh q t‘= tanh 5 - tanh q 

x’=cothc+tanhq t‘=cotht-tanh q .  

t‘=tanc-tan q 

Hereafter c=  4 (x+ t), q= ;(x-?) are cone variables. 
By virtue of the above remarks, the validity of the assertion follows from 

theorem 1. 

Theorem 2. Provided equation (1) admits non-trivial sv in the sense of definition 1, it 
is locally equivalent to one of the following equations: 

(1 )  Ou+ mxu=0 

(2)  nu + mx-4= 0 

(3) O U + C O S - ~  x(mt+m2 sin X ) U = O  

( 4 )  

(5) 

Ou +cosh-’ x(mt + m2 sinh x) = 0 

Ou + sinh-’ x(m, + m2 cosh x )  = 0 
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(6)  

( 7) O u +  (ml +my-’)u=O 

(81 Ou+mu=O. 

Thus, there exist eight inequivalent types of equations of the form (1) admitting 
non-trivial sv. 

It is well known that there are 11 coordinate systems providing separability of the 
Klein-Gordon-Fock equation Ou+mu=O into two second-order ODE [6]. Besides 
that, in [I41 it was established that the Euler-Poisson-Darboux equation (6) ,  which is 
equivalent to the second equation of (12), separates in nine coordinate systems. That 
is why cases V(x)=m and V(x) = m ~ - ~  are not considered here. 

As is shown below, the general form of solution with separated variables of (12) is 
as follows: 

u(t, x) = PI(W(h X))Pz(02(t, x)) (13)’ 

where qI(o1), e ( w Z )  are arbitrary solutions of the separated ODE 

ei= ( n + g i ( m P z  i = l , 2  (14) 

and expiicit forms of the functions wi( f ,  x), gi (wi )  s e  given below. 

Theorem 3. Equation Ou+mxu=O separates in two coordinate systems 

(1 )  w t = t  W ’ = X  g1=0 g2 = mm2 

(2) w1 = (x+ p+ (x- t)”2 

w z =  ( x +  t)”2- ( x i  t y  

g, =-am@; g2= -7“;. 

(15) 

I 

Theorem 4. Equation nu+ sin-’ x(ml + m2 cos x)u= 0 separates in four coordinate 
systems 

(1) w1=t W 2 = X  g1 =o g2=cos+ 02(m1 +m2 sin m2) 

(2) {:}=arctan sinh(wI+w2)*arctan sinh(wl-wJ 

gl=(ml+m2) s i n P o l  

{: 1 = arctan cn(w I + 02) 

gl =ml dn2 wt cn-’ 01 s f 2  col +mz[sf2 wl-dn2 WI cn-’ 011 
g2=mlk4 sn2 w2 cn2 w2 dn-’ o?+m2k2[cn2 w2 dn-2 w2-sn2 w2]. 

g2= -(ml -m2) cosh-2 w2 

sn(w + 0 2 )  arctan sn(m -a) 
cn(wl - w2) 

(3) 

(16) 

gl=ml[dn201 cn-2wl+kZsn20, ]+m2[(k‘)2cn-201+2cnZw1]  

g2=ml[dn2 (0’ w 2 + 2  sn’ o~l+m~[(k‘)’  cf2 0 2 + 2  cn2 0 2 1 .  
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In the above formulae (16) k ,  k‘= (1 -p)”’ are the moduli of corresponding elliptic 
Jacobi functions, and k is an arbitrary constant satisfying the inequality 0 < k < 1. 

Theorem 5. Equation Ou+cosh-’ x(ml +m2 sinh x)u=O separates in four coordinate 
systems 

(1 )  w l = t  w2=x g1=0 g2=cosh-2 w2(mI +m2 sinh 0 2 )  

R Z Zhdanov et a1 

(3) 

g~=ml(k‘)~dn-’ 2w1+m2cn2wl dn-’2cu1 

g2=ml(k’)’ dK2 202+m2 cn 2w2 dn-’ 2w2 

(:}= -ln si* i(ol +ma)  i In cosh i(w1- w2) 

gI=cosh-’ wl(ml-m2sinh w ~ ) , g ~ = c o s h - ~  oz(ml-m2sinhw2) 

gl=-mllZsn2wl+kZm2snwl cnwl 

g2=-mll? sn2 wz+Pmz sn w2 cn 0 2 .  

Here k ,  K = (1 -/?)I/’ are the moduli of corresponding elliptic functions, 0 <k < 1. 

Theorem 6. Equation nu + ~inh-~x(ml +m2 cosh x)u= 0 separates in eleven coordinate 
systems: 

(1) o1=t 0 2 = x  g1=0 g2=sinh-’ w2(mt+m2cosho2). 

(2)  [;]=-In ;(mi + 02) *In i ( w l  - w2)  

gl =(ml -m2)wF2 gz= (ml +m2)wT2 

(3) 

(4) 

{ ;]= -In sin f ( o t + w 2 ) i .  sin i ( w l - w 2 )  

gl = (ml - m2) sin-’ w I 

{:)=-In sinh :(@I+ wz) *In si* 

gl=sinh-2wl(m~+m2cosh w1) gZ=sinh-’ 02(mI-m2cosho2) 

[ :)=-ln cosh i ( w l  +w2) i1n cosh ;(a1 -w2) 

g l=s inh-20~( ,n~-m2coshw~)  g,=sinh-’ w2(ml-m2cosh 02) 

g2=(ml+m2) sin-2w2 

-w2)  
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14) {:}=In tanh t (wl  + WZ) f ln tanh ;(@I - wz) 

gl=cosh-‘ ml(ml-m2) 

{:}=In tan 4(wl + 0 2 )  i In tan ;(al - wz) 

gz= -cosh-2 w2(mI +m2)  

( 7) 

gl =cos-’ wl(ml + mz) gz =cos-’ wz(ml -m2) 

(8) {:]=arctanh cn(wl+w2)*arctanhcn(wl-~2)  

gl =(ml +m2) dn2 0 1  cn-’ W I  + (ml -mz)# snz 01 

g ~ = ( m ~ - m z )  dn2 o~cn-~  w ~ - k ( m ~ + m ~ ) k ~ s n ~ ~ ~  

( 9 )  {:}=arctanh dn’(wl+~~)*arctanh dn(ol-w2) 

gl = (ml +m2)# cn2 wI dn-’ m~ f (m - m2)# sn2 WI 

gz=(ml-mz)#  cnz wz dn-’ m2+(ml+m2)# sn2 w2 

{ :}= arctanh sn(wl + 412) iarctanh sn(o, - w2) 

g l = ( m l  +m2) sn-’ 01 +(ml-m2)kZ sn’ w, 
gz= (ml + mz)# cn2 0 2  dn-’ w2 + (ml - m Z ) P  dn2 oz cn-’ w2 

(11) {:}=ib c n ( u l + m 2 ) ~ ~  cn(wl-az) 

gl=-ml sn-’ wl-mz cn wI sn-2 w ,  
g2= -ml sn-2 w2 -pnz cn o2 sn-2 w2.  

Here k are the moduli of corresponding elliptic functions, 0 c k < 1. 

Theorem 7. Equation Ou+exp x(ml +wiz exp x)u = 0 separates in six coordinate 
systems: 

(1) wt=t O Z = X  g1=0 
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( 4 )  {:}=In cosh(wl + w2) *In cosh(wl -w2) (19) 

gl = -2m1 cosh 2031 - fm2 cosh 4w1 

g2= -2ml cosh 2 0 ~ -  Tm2 cosh 4w2 

{:}=In cosh(wl +a)*) k In sinh(wl - w2) 

gl = -2ml sinh 20, - zm2 cosh 4wI 

g2 = -2ml sinh 202  - zm2 cosh 4w2 

I 

( 5 )  

I 

I 

(6) {;}=In ( 0 1  + 0 2 )  *ln ( 0 1  -U?)  

g1=2m1+ 2m2m: g2 = -2ml + 2mZco:. 

Theorem 8. Equation Clu+(ml + m t ~ - ~ ) u = O  separates in six coordinate systems: 

( 1 )  0 1 = f  0 2 = X  g1=0 gz=ml+m20+2  

(2 )  {;j=exp(ol +w2)*exp(oi-wz)  

gl=4m1 exp 2 0 1  

{ :]=sin(wl+ 0 2 )  *sin(@] - 0 2 )  

g2 = m2 cosh-2 o2 

(3) 

gl =2ml cos 2wl +m2 sinM2 wI 
g2= -2ml cos 2w2 + m2 cos-' o2 

( 4 )  {:}=sinh(ol+w2)+sinh~w1-w2) 

g1=2m1 sinh2wl+m2sinh-"wl 

g2=-2ml sinh2wz-m2 sinh-2w2 

{ :)=cosh(ol +a2) J,cosh(wl - w2) 

gl = 2m1 cosh 2w1 -m2 cosh-2 ul, 
ga=2ml cosh 2w2-mz cosh-2 w2 

{ ;}=b + W2)2*(WI - w2)2 

gl =-16mlw?+m2u;' 

g2= -16mIw:+m2w;2. 
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We now give a sketch of the proof of the above assertions. Substituting ansatz (7) 
into ( l ) ,  expressing functions dj, via functions @ d ,  pf by means of equalities (8) and 
splitting the equation obtained with respect to independent variables Qj ,  pj we obtain 
the following system of nonlinear PDE: 

(1) QOCU~+~(Q&- Qxxa)lx)+QAi(%. 2.) (d-dX)=0 i = l , 2  (21) 

(21 OQ+ Q R ( w i ,  2.)(&- 0% +Nw,  2.)(&-&)l+ Q W ) = o  (22) 

(3) o l r o Z I -  wlxoJ&= 0. (23) 

Here O=a:-a",. 
Thus, to separate variables in the linear PDE (1) one has to construct the general 

solution of the system of nonlinear equations (21)-(23). The same assertion holds true 
for any general linear ditrerential equation, i.e. the problem of sv is an essentially 
nonlinear one. 

It is not difficult to become, convinced of the fact that, from (23), it follows that 

(CO?,- ot,)(w:,-oL)#o. (24) 

Differentiating (21) with respect to 2. and using (24) we obtain 

Al.%= Au=O 

whence E,nB2n#0. Differentiating (22) with respect to A, we have 

BIA(&-wZ) +&n(&-&)=o 

or 

-- 5 , r -  -w:,-o:, 
Bu, d-&' 

Differentiation of the above equality with respect to 2 yields 

E1 d z i -  EIAEZBZM = 0 

or 

h . - E 2 m .  
BIA 5%' 

Since functions & = El(ol), E 2 = E 2 ( 0 2 )  are independent, there exists a function 
x(2.) such that 

E ; ~  = x(n)5,, i= 1,2 

Integrating the above differential equation with respect to 2. we obtain 

&(mi)  =N2.)JX4 + g d o i )  i = l , 2  

wherej;, gj are arbitrary smooth functions. 
On redefining the parameter 2.+h(A), we have 
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Substitution of (25) into (22) with subsequent splitting with respect to d yields the 
following equations: 

R Z Zhdanov et a1 

OQ+ Q ~ i ( w t - ~ : , ) f g z ( o : , - w ~ ) l +  Vx)Q=O (26) 

Thus, system (21)-(23) is equivalent to the system of equations (21), (23), (26), (27). 
Before integrating, we make a remark: it is evident that the structure of ansatz (7) is 
not altered by transformation 

f i (o:,-w:,)+f,(w:,-o~)=o. (27) 

where hi ,  R, are smooth-enough functions. This is why solutions of the system under 
study connected by relations (28) are considered to be equivalent. 

Choosing the functions hi, Ri in a proper way, we can put in (21) and (27) 

fi=f2=1 AI = Az=O.  

Consequently, functions U], 02 satisfy equations of the form 

. 6J,,w~,-o,,oz,=o 
2 ~ 2  2 oI,- ml,+wzt- o&=o 

whence 

(wIi:w2):-(mI *o*):'=o. 

OJI =F( 5) + G(v), oz=F( E ) - G(v) 
Integrating the above equations, we obtain 

(29) 
where F, G c C 2 ( R 1 ,  RI) are arbitrary functions, t = ( x + f ) / 2 ,  q=(x-1)/2. 

Substitution of (29) into (21) with .41 =Az=O yields the following equations: 

(In e),= 0 (In Q L = o  
whence Q = 1. 

Finally, substituting the results obtained into (26), we have 

Thus, the problem of integrating an over-determined system of nonlinear differential 
equations (21)-(23) is reduced to integration of the functionaldifferential equation 

Let us summarize the results obtained. The general form of solution of (I) with 
(30). 

separated variables is as follows 

U =  CPI(F( 5 ) + G( ?))dF( 5 ) - G(II ) )  (31) 
where q, are arbitrary solutions of (14), functions F( C), G(q), gl(F+ G ) ,  g2(F- G) 
being determined by (30). 

To integrate Eq. (31) we make the hodograph transformation 

5 = P(F) t l=R(G)  (32) 
where ?go, R f O ,  
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After making the transformation (32),  we obtain 

gl(F+G)-gz(F-G) =P(F)k(G)V(P+R). (33) 

Evidently, equation (33) is equivalent to the following equation: 

(8:- &)[P(F)R(G) V(P + R)] = 0 

Thus, to integrate (30) it is enough to construct all functions P(F), R(G), V(P+ R )  
satisfying (34) and to substitute them into (33). 

In [SI we have proved the following assertion: 

L e m a .  The general solution of (34) determiped up to transformation (10) is given by 
one of the foUowing formulae: 

(1) V= V(x) is an arbitrary function 

P = a  k = a  

( 2 )  . V=mx 

P = a P + p  R’=aR+ y 

(3) v= mx-’ P=Qi(F) R=Qz(G) 

&=aQf+pQ:+ y e ? +  SQI + p  

@ = a Q ~ - P Q ~ + y Q : - S @ + p  

(4)  v= m sin-’ x P=arctan Ql(F)  R=tm Qz(G) 

and el, QZ are determined by (35) 

( 5 )  v= m x P=arctanh Ql(F) R = arctanh &(G) 

and Q l ,  QZ are determined by (35) 

(6) V=m cosh-’x P=arccoth Q l ( F )  R =  arctanh Qz(G)  

and Ql, QZ are determined by (35) 

( 71 V=m exp x, 

P = a  exp 2P+ p exp P+ y 

I?= a exp 2R + 6 exp R + p 

V= cos-’ x(ml + m2 sin x) 

I”= a sin ZP+D cos ZP+ y 

R’= a sin 2R+ p cos 2R + y 

(8) 

( 9 )  V=cosh-’ x(ml +m2 sinh x) 

= a sinh 2P+ p cosh 2P+ y 

I?’= E sinh 2 R - P  cosh 2R+ y 

(35) 
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(10) V=sinh-'x(ml +m2 cosh x) 

R Z Zhdanov et a1 

p = a  si& 2 P + p  cosh 2P+ y 

R2 = -a sinh 2R + p cosh 2R+ y 

V =  (ml +m2 exp x) exp x (11) 
p=-p+p # = - R Z + p  

(12) V = m ,  + m2x-2 

P Z = a P ' + p P +  y R 2 = a R Z - P R +  y 

(13)  V =  m 

P = a P + p P +  y R2 = aR2 f 6 R +  p. 

Here a,p, y . 6 , p , m l , m a , m  aiearbitrary real parameters; x = c f r l = P + R .  
Theorems 1 and 2 are direct consequences of the above lemma. To prove theorems 

3-8 one has to integrate the ODE for P(F) ,  R ( G )  and substitute the expressions obtained 
into formulae (32) 

t ( x + t ) = P ( F ) E P ( ( w ,  + w , ) / 2 )  

;(x - L) = R ( G )  ER( (&,  - @/2) 

and into (33).  
Thus, the problem of separation of the wave equation (1) into two second-order 

differential equations is completely solved. 
Since all coordinate systems wl, w2 satisfy equation (23),  we have orthogonal separ- 

ation of variables: To obtain non-orthogonal coordinate systems providing separability 
of (1) one has to carry out sv following delinition 2. 

3. Non-orthogonal separation of variables in equation (1) 

Utilizing the sv procedure in (1) determined by definition 2, we come to the following 
assertions (corresponding computations are omitted). 

Theorem 9. Equation (1) admits sv in the sense of definition 2 iff it is locally-equivalent 
to one of the following equations: 

(1) Ou +mu= 0 

(2) nu +mx-2u =O 

where m is an arbitrary real constant. 
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Theorem I O .  Equation Du+mu=O separates in two coordinate systems 
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(1) w1=5 w 2 = 5 + q  

(2) w1=5 w 2 = h 5 + l n  q 

@I = -a#791 

el = -apl &=a&+m@ 

&=A&+ m exp(oz)@. 

Theorem 11. Equation Ou+mx-*u=O separates in eight Coordinate systems 

@ = a@ + mwT2@ 
(1) w1=5 0 2 = 5 + 7 !  

= 4 9 ,  

(2) 0 , = 5  o2 = arctan 5 + arctan q 

(3) w1=5 w2=’arctanh C+arctanh q 
@I=-n( i  +w:)-IpI &=A&+, s’ 1I1 -2 U2@ 

@I = -a (1 - w3-Iq1 & =L& + m sinh-2 w2 pl2 

(4) ‘ w 1 = 5  w2=arccoth ti-arccoth q 

@I = n ( i  - ~ : ) - l p ,  &=ah + ~ i n h - ~  u2@ 

(5) W l = 5  w2=arctanh e+arctanh q 

el = - a ( i  - &=A&-mcosh-’o2@ 

(6) w = 5  012=ar~oth S+accoth 

Gl=a( i  @=A&-mcosh-’w2@ 

(7) w , = 5  2-  2 ( l n  (-In q) 

@I =-a (2wI)-l9l  @ = A& - m cosh-2 w2 @ 

el = awi2pI @=a&+mw;’R. 

- ?  

(8) w1=5  02= 5-1 + 7-1 

In the above formulae Lis a separation constant, e = $ ( x + t ) ,  q = t ( x - t ) .  
As a direct check shows, the above.coordinate systems do not satisfy (23). Conse- 

quently, they are non-orthogonal. 

4. Conclusion 

Let us say a few words about the intrinsic characterization of sv in (1). It is well known 
that the solution of the second-order linear PDE with separated variables is a joint 
eigenfunction of mutually-commuting symmetry operators of the equation under study 
(for more detail, see [ 13,141). Below, we construct the second-order symmetry operator 
of (1) such that solution with separated variables is its eigenhnction and parameter 
is an eigenvalue. 

Making in (1) the change of variables (29), we obtain 

#*,e, -um,e ,=  V(4+ q)[.E’(5)6(tl)l-’u. (36) 
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Provided (1) admits sv, by virtue of (33) there exist functions g@+ G), g2(F- G) such 
that 

R Z Zhdanov et a1 

v(5+ v)[."( 5)6(~)1-' =g@+ G ) - d F - G ) .  

U,,,, - ~ m , : = k d o d  -g2(w2)1u 

Since F + G = o l ,  F - G = 0 2 ,  equation (36) takes the form 

or 

xu=o x = a i t  - aiz - gl(w + g3(O2). 

Clearly, the operators Qi=a',,-g,{oi), i= 1,2 commute with the operator X ,  i.e. they 
are symmetry operators of (1) and, what is more, the relations 

Q,u = Q@I I )  ~ ( 0 2 )  = (0 I )  M o 3  = i= 1,2 

hold. 
It should be noted that V N Shapovalov camed out classification of potentials V(x)  

such that (1) admitted a non-trivial second-order symmetry operator [15] but he lost 
cases (4 )  and ( 9 )  from theorem 1. 

It was shown by Osbome and Stuart [16] that the method of sv could be applied 
to nonlinear PDE. In [8] we suggested a regular approach to sv in nonlinear partial 
differential equations. In future publications we intend to apply this approach to separ- 
ate variables in the nonlinear wave equation U,,-u,=F(u). 
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